

Head Office: 216 & 217, 2nd Floor, Grand Plaza, Fraser Road, Dak Bunglow, Patna - 01

JEE Main 2023 (Memory based)

29 January 2023 - Shift 1

Answer & Solutions

CHEMISTRY

1. Consider the following sequence of reactions: -

- $\mathsf{A}. \quad \mathsf{I} > \mathsf{IV} > \mathsf{II} > \mathsf{III}$
- B. I > IV > III > II
- $\mathsf{C}. \quad |\mathsf{I}| > |\mathsf{I} > |\mathsf{V} > |$
- $\mathsf{D}. \quad \mathsf{IV} > \mathsf{I} > \mathsf{II} > \mathsf{III}$

Answer (C)

Solution:

Acidic strength $\propto -I, -M$ Groups Acidic strength $\propto \frac{1}{+I,+M}$ Groups Acidic strength order: I > IV > II > III pK_a order: III > II > IV > I

- 3. Which of the following compound(s) is/are paramagnetic
 - a) *NO*₂
 - b) *NO*
 - c) $K_2 O$
 - d) Na_2O_2
 - A. a & b only
 - B. a, b & c only
 - C. a, b, c & d
 - D. a, b & d only

Answer (A)

Solution:

NO: ($N_e = 15$)

- 1 Unpaired electron as per MOT.
- **4.** Cannizzaro reaction is an example of disproportionation reaction. What is the catalyst used in Cannizzaro reaction?

- A. $FeCl_3$
- B. *Na0H/H*₂*0*
- C. $ZnCl_2/H^+$
- D. $H_2/Pd/BaSO_4$

Answer (B)

Solution:

5. Arrange the following in decreasing pK_a values

- $\mathsf{A}. \quad \mathsf{IV} > \mathsf{III} > \mathsf{II} > \mathsf{I}$
- $\mathsf{B}. \quad \mathsf{I} > \mathsf{III} > \mathsf{IV} > \mathsf{II}$
- $\mathsf{C}. \quad \mathsf{IV} > \mathsf{III} > \mathsf{I} > \mathsf{II}$
- D. IV > II > III > I

Answer (B)

Solution:

 $\begin{array}{l} Acidity \ \propto \frac{1}{pK_a} \end{array}$ The order of acidity is: II > IV > III > I Therefore, their value of pK_a will be: I > III > IV > II

6. Which of the following reaction corresponds to Mond's process

A.
$$ZrI_4 \xrightarrow{1800 K} Zr + 2I_2$$

B. $Ni(CO)_4 \xrightarrow{450 - 470 K} Ni + 4CO$
C. $2[Au(CN)_2]^-(aq) + Zn(s) \rightarrow 2Au(s) + [Zn(CN)_4]^{2-}(aq)$
D. $2Al_2O_3 + 3C \rightarrow 4Al + 3CO_2$

Answer (B)

Solution: Mond process for refining Nickel

$$Ni + 4CO \xrightarrow{330-350 K} Ni(CO)_4$$
$$Ni(CO)_4 \xrightarrow{450-470 K} Ni + 4CO$$

7. Which of the following option contains the correct match

List – I	List - II
P. Clemmenson reduction	i. Con.KOH
Q. Reimer Tiemann reaction	ii. Br ₂ /NaOH
R. Cannizzaro reaction	iii. CHCl ₃ /KOH
S. Hoffmann bromamide degradation reaction	iv. Zn – Hg/HCl

- A. P-(i), Q-(ii), R-(iii), S-(iv)
- B. P-(iv), Q-(iii), R-(i), S-(ii)
- C. P-(ii), Q-(iii), R-(iv), S-(i)
- D. P-(iii), Q-(iv), R-(i), S-(ii)

Answer (B)

Solution:

Clemmenson reduction - Zn - Hg/HClReimer - Tiemann reaction - $CHCl_3/KOH$ Cannizzaro reaction - Con.KOHHoffmann bromamide degradation reaction - . $Br_2/NaOH$

8. X: No of Bridge Bonds present in compound $Mn_2(CO)_{10}$ Y: No of Bridge Bonds present in compound $W(CO)_6$

Find out (X+Y)

Answer (00.00)

Solution:

$$X + Y = 0$$

9. An element ${}^{239}_{92}X \rightarrow {}^{231}_ZY + 2\alpha + 1\beta$

Then find the value of Z in the above reaction?

Answer (89)

Solution:

 $^{239}_{92}X \rightarrow ^{231}_{89}Y + 2 \,^{4}_{2}He^{2+}_{-1}^{0}e$ Therefore, the value of Z = 89

10. The shortest wavelength in Lyman series of H-atom is λ . of the longest wavelength in Balmer series He⁺ is $\frac{x\lambda}{5}$. Find the value of x.

Answer (9)

Solution:

The shortest wavelength in Lyman series of H-atom is given by

$$\frac{1}{\lambda} = R_H \left[\frac{1}{(1)^2} - \frac{1}{(\infty)^2} \right] = R_H$$
$$\Rightarrow \lambda = 1/R_H$$

The longest wavelength in Balmer series He^+ ion is given by

$$\frac{1}{\lambda'} = (2)^2 R_H \left[\frac{1}{(2)^2} - \frac{1}{(3)^2} \right] = \frac{5R_H}{9}$$
$$\lambda' = \frac{9}{5R_H} = \frac{9\lambda}{5}$$
$$\therefore x = 9$$

- **11.** Assertion: First law of thermodynamics has equation: $\Delta U = q + W$ Reason: First law of thermodynamics is based on the law of conservation of energy
 - A. Assertion and reason are correct and reason is the correct explanation of assertion
 - B. Assertion and reason are correct and reason is not the correct explanation of assertion
 - C. Assertion is correct but reason is incorrect
 - D. Assertion is incorrect but reason is correct.

Answer (A)

Solution:

First law of thermodynamics is based on the law of conservation of energy and its equation is, $\Delta U = q + W$

12. Match the following.

a.	Siderite	i. ZnCO₃
b.	Galena	ii. FeCO₃
c.	Calamine	iii. PbS
A.	(a) – (i) ; (b) –	(ii) ; (c) – (iii)
B.	(a) – (ii) ; (b) –	- (iii) ; (c) – (i)
C	(a) – (iii) ; (b) –	- (ii) : (c) – (i)

C. (a) - (iii) ; (b) - (ii) ; (c) - (i) D. (a) - (ii) ; (b) - (i) ; (c) - (iii)

Answer (B)

Solution:

The correct match is given as : Siderite – FeCO₃ ; Galena – PbS ; Calamine – ZnCO₃

- 13. The number of cyclic tripeptides are formed with two amino acids A and B are :
 - A. 2
 - B. 3
 - C. 4
 - D. 5

Answer (C)

Solution:

Cyclic tripeptides contains three amino acids and the combinations possible using amino acids A and B are : AAA, ABB, AAB, BBB

- 14. Which of the following complex is optically active?
 - A. $Cis [Pt(NH_3)_2Cl_2]$
 - B. Trans [Pt(NH₃)₂Cl₂]
 - C. $Cis [Pt(en)_2Cl_2]$
 - D. Trans [Pt(en)₂Cl₂]

Answer (C)

Solution:

cis – $[Pt(en)_2Cl_2]$ does not have POS and COS and hence is optically active.

- 15. Which of the following will give positive Lassaigne's test
 - A. NH₄OH

- B. NH₄Cl
- C. N₂H₄
- $\mathsf{D}. \quad \mathsf{C}\mathsf{H}_3-\mathsf{N}\mathsf{H}_2$

Answer (D)

Solution:

A compound with C-N bond will give positive Lassaigne's test. Hence, $CH_3 - NH_2$ will give positive Lassaigne's test.

16. The decreasing order of the boiling points for the following compounds is given as :

- A. | > || > ||| > |V
- B. I > II > IV > III
- C. III > IV > II > I
- $\mathsf{D}. \quad \mathsf{III} > \mathsf{IV} > \mathsf{I} > \mathsf{II}$

Answer (C)

Solution:

Boiling point is directly proportional to molar mass. Order of molar mass of the given compounds = III > IV > II > IHence, order of B.P. = III > IV > II > I

- 17. Which of the following molecule has the highest bond dissociation energy?
 - A. *I*₂
 - B. *F*₂
 - C. Cl_2
 - D. *Br*₂

Answer (C)

Solution:

 Cl_2 has the highest bond dissociation energy among the halogens.

- 18. Select the correct statement among the following.
 - A. Photochemical smog has the high concentration of oxidising agent
 - B. Classical smog has the high concentration of oxidising agent

- C. Classical smog contains NO2
- D. None of these

Answer (A)

Solution:

Photochemical smog has the high concentration of oxidising agent

19. Find out the magnetic character of Li_2O , KO_2 and MgO in that order.

- A. Diamagnetic, Paramagnetic and Diamagnetic
- B. Paramagnetic, Paramagnetic and Diamagnetic
- C. Diamagnetic, Paramagnetic and Paramagnetic
- D. Diamagnetic, Diamagnetic and Diamagnetic

Answer (A)

Solution:

 Li_2O has Li^+ and O^{2-} . Both the cation and anion have all their electrons paired. So, it is diamagnetic. KO_2 has K^+ and O_2^- . It is paramagnetic as O_2^- has one unpaired electron.

 $0_2^{-}: \sigma_{1s^2} \sigma_{1s^2} \sigma_{2s^2} \sigma_{2s^2} \sigma_{2s^2} \sigma_{2p_z^2} \pi_{2p_x^2} = \pi_{2p_y^2} \pi_{2p_x^2} \pi_{2p_x^2} = \pi_{2p_y^2} \pi_{2p_x^2} \pi_{2p_x^2} = \pi_{2p_y^2} \pi_{2p_x^2} \pi_{2p_x^2} = \pi_{2p_y^2} \pi_{2p_x^2} \pi_{2p_x^2} \pi_{2p_x^2} = \pi_{2p_y^2} \pi_{2p_x^2} \pi_{$

MgO has Mg^{2+} and O^{2-} . It is diamagnetic as Mg^{2+} and O^{2-} have all their electrons paired.

20. Which of the following option contains the correct decreasing order of hydration energy of the following ions? $K^+, Mg^{2+}, Cs^+, Ca^{2+}, Rb^+$

A. $Mg^{2+} > Ca^{2+} > K^+ > Rb^+ > Cs^+$ B. $Ca^{2+} > Mg^{2+} > Cs^+ > Rb^+ > K^+$

C. $Mg^{2+} > Ca^{2+} > Cs^+ > Rb^+ > K^+$ D. $Cs^+ > Rb^+ > K^+ > Ca^{2+} > Mg^{2+}$

Answer (A)

Solution:

Hydration energy α Charge density Therefore, the correct order is: - $Mg^{2+} > Ca^{2+} > K^+ > Rb^+ > Cs^+$

21. How many of the following compounds are odd electron species? *NO*₂, *NO*₂⁺, *ICl*₄⁻, *BrF*₃, *NO*

Answer (2)

Solution:

NO and NO_2 are the odd electron species.

22. For a hypothetical reaction

 $A \rightleftharpoons B$; $K_{eq} = 10^2$ (Use $T = 27 \,^{\circ}$ C, $R = 8.3 J K^{-1} mol^{-1}$, ln10 = 2.3) If the value of ΔG° for the above reaction is -x kJ, the value of 2x will be (Round off to the nearest integer)

Answer (23)

Solution:

 $\Delta G^{\circ} = -RT ln K_{eq}$ $= -8.3 \times 300 \times 2.3 \log(10^2)$ $\Delta G^{\circ} = -11454 J$ $\Delta G^{\circ} = -11.454 \, kJ$ x = 11.4542x = 22.908

23. A radioactive substance decays into products with half life of 30 min. The fraction left after 90 min is given by $(\frac{1}{2t})$. Find out "t".

Answer (4)

Solution:

$$N_0 \xrightarrow{30 \text{ min } N_0} \frac{N_0}{2} \xrightarrow{30 \text{ min } N_0} \frac{N_0}{4} \xrightarrow{30 \text{ min } N_0} \frac{N_0}{8}$$
$$\Rightarrow \frac{1}{8} = \frac{1}{2t}$$
$$t = 4$$

24. How many elements can liberate H_2 from dilute acids?

V, Cr, Mn, Fe, Co, Ni, Cu

Answer (6)

Solution:

Except Cu, all other elements have negative $E_{M^{2+}/M}^{0}$. Hence, they can liberate H_2 from dilute acids.

No. of elements =
$$6$$

25. Consider the following reaction. $H_2O(g) = H_2(g) + \frac{1}{2}O_2(g)$ If $K_{eq} = 2 \times 10^{-3}$ at 2300 K and initial pressure of $H_2O(g)$ is 1 atm, then degree of dissociation of above reaction will be $x \times 10^{-2}$, the value of x is:

Answer (2)

Solution:

$$K_{eq} = \frac{(P_{H_2})(P_{O_2})^{1/2}}{P_{H_2}o} = \frac{(\alpha)\left(\frac{\alpha}{2}\right)^{1/2}}{1-\alpha} = 2 \times 10^{-3}$$

$$\Rightarrow \frac{\alpha^{\frac{3}{2}}}{2^{1/2}} = 2 \times 10^{-3} \quad (1-\alpha \approx 1)$$

$$\Rightarrow \alpha^{\frac{3}{2}} = 2^{\frac{3}{2}} \times (10^{-2})^{\frac{3}{2}}$$

$$\alpha = 2 \times 10^{-2}$$

$$x = 2$$